

Final Year Project
Report
K Cloud
IIOT customizable solution for data transfer in small to

medium industrial control.

SETU Waterford

Higher Diploma Computer Science

Student: David Roche

Number: 93521243

Project Supervisor: Caroline Cahill

Pg. 2

REVISION SHEET

Release No. Date Revision Description Reviser

Rev 1.0 10-Febuary-2024 Interim Report D Roche

Rev 1.1 3-April-2024 Final Report D Roche

EXTERNAL DOCUMENTATION
This document is best read with reference to the following external documents.

• GitHub Repository Master Readme file

https://github.com/RocheDJ/kCloud/tree/main

DECLARATION OF AUTHENTICITY

I declare that the work which follows is my own, and that any quotations from any sources (e.g.
books, journals, the internet) are clearly identified as such by the use of ‘single quotation
marks’, for shorter excerpt and identified italics for longer quotations. All quotations and para-
phrases are accompanied by (date, author) in the text and a fuller citation is the bibliography. I
have not submitted the work represented in this report in any other course of study leading to
an academic award.

Student……………………………………............................... Date …..…………….............

Workplace Mentor……………………………………………… Date ……………………………

https://github.com/RocheDJ/kCloud/tree/main
https://github.com/RocheDJ/kCloud/tree/main

Pg. 3

TABLE OF CONTENTS

Page #

Revision Sheet .. 2

External Documentation .. 2

Declaration of Authenticity ... 2

Glossary Of Terms ... 5

Table Of Figures .. 6

1.0 Introduction .. 8

1.1 Background ... 8

1.2 Generalized Customer requirements .. 9
Customer A:... 9
Customer B: ... 9
Customer C: ... 9
Customer D:... 9

1.3 Project Aims and Scope ... 10

2.0 Market Research .. 11

2.1 Terminology and Theory ... 11

2.2 Product research ... 13

3.0 System Overview ... 15

3.1 Application in brief ... 15

3.2 Real World Application ... 15

3.3 Detailed Overview ... 16

4.0 Design and Analysis. .. 17

4.1 Data models ... 17
4.1.1 User Data Model .. 17
4.1.2 Process Variable Model or Object (PVO) .. 18
4.1.3 Process Data Model or Object (PDO) .. 19

4.1.3.1 Example Specific data for the PDO JSON ... 19
4.1.4 Control Data Model or Object (CDO) .. 20
4.1.5 Installation Model .. 20

4.2 Hardware. .. 21

4.3 Software. .. 22
4.3.1 New Technologies and platforms. .. 23
4.3.2 Tools and IDE .. 24

4.4 Control Philosophy. .. 25
4.4.1 Example inputs and outputs ... 25
4.4.2 Network Layout ... 26

4.5 Project Management .. 27

5.0 Functional design specification ... 28

5.1 Edge to Fog Development .. 28
5.1.1 Main ... 28

Pg. 4

5.1.2 Local Webserver Process. .. 29
5.1.3 API Web Client Process ... 31
5.1.4 API GET Client Process ... 31
5.1.5 Code Layout and Notes .. 32

5.2 Backend Development .. 34
The API implements JWT authentication, I tested this for several routes mainly within user management

as well as PVO write. .. 37
5.2.1 Swagger UI .. 37

5.3 Front End Web Application .. 39

5.4 Native Android App ... 42

6.0 Issues and Resolutions ... 45

6.1 Fog Node Issues ... 45
6.1.1 Auto starting on Open WRT .. 45
6.1.2 Don’t mention the firmware! .. 45
6.1.3 Communication between sub processes ... 45

6.2 Back end /Front End Issues ... 46
6.2.1 Node Versions .. 46
6.2.2 More Start stop Issues. ... 47
6.2.3 Frappe Charts Datasets ... 48

7.0 Reflection .. 49

7.1 Project Goals achieved and not. .. 49

7.2. What I learned. .. 50
7.2.1 A very brief word on AI. .. 50

7.3 Future Development Work. ... 50

Bibliography ... 52

Appendix A – kEdge Program Flow chart .. 55

Appendix B- Ethical Approval Checklist .. 56

Appendix C- Open API documentation for backend .. 61

Appendix D- Database ER diagram .. 62

Appendix E-Technologies Used and end result. ... 63

Pg. 5

GLOSSARY OF TERMS

Term Description
RAD Rapid Application Development

SCADA Supervisory Control and Data Acquisition

SME Small to Medium enterprise

JSON
JavaScript Object Notation Light wight self-describing, human readable data ex-
change format.

ERP
Enterprise resource planning (ERP) processes and systems that organizations use
to manage day-to-day business activities including quality planning and mainte-
nance.

AWS Amazon web services

IT Information Technology

OT Operational Technology

CLI Command Line Interface.

PLC Programmable Logic Controller

IEC 61131-3

Worldwide recognized standard for programming and configuring industrial
control devices. Part 3 outlines the basic software architecture and programming
languages.
Ladder diagram (LD)- graphical.
Function block diagram (FBD)- graphical.
Structured text (ST)- textual.
Sequential function chart (SFC)-graphical.

IIOT Industrial Internet of Things.

NDA Non-disclosure Agreement.

UML Unified Modeling Language

ST A scripting language, one of the IEC 61131-3 languages.

ROI Return on Investment.

Pg. 6

TABLE OF FIGURES

Figure 1 ‘Top 10 Industrial trends 2023’ (Taparia, 2023) .. 11
Figure 2 Cloud v Fog (MOXA, 2019) .. 12
Figure 3 Initial Solution Proposal as submitted. ... 15
Figure 4 Python Routine that runs for one in 3 minutes. .. 15
Figure 5 Overview of Proposed Application .. 16
Figure 6 User Data Model ... 17
Figure 7 Process Variable Model .. 18
Figure 8 Process Data Model .. 19
Figure 9 Control Data Model .. 20
Figure 10 Installation model. .. 20
Figure 11 Software Technologies used. ... 22
Figure 12 Network and Sensor Layout ... 26
Figure 13 Screen shot from planning board in MS Teams, Feb 9th, 2024. .. 27
Figure 14 Signal Handler Class .. 28
Figure 15 Local web overview origonal wireframe. ... 29
Figure 16 Final Overview page. .. 30
Figure 17 Fog Node Web server API calls. .. 30
Figure 18 SQLite PVO table showing data note Status field values 200. ... 31
Figure 19 Example of a method that uses the Python Requests library to post information to the API

backend. .. 31
Figure 20 Python Folder layout. ... 32
Figure 21 Main step type enum... 33
Figure 22 A screen snip from early on in project development of handing JSON in SQLite 33
Figure 23 PVO JSON Object .. 35
Figure 24 Snip from PVO data table showing various PVO values. .. 36
Figure 25 SQL to Extract all PVO titles. .. 36
Figure 26 SQL query to extract average hourly temperature data. .. 36
Figure 27 API data base model showing SQL in use.. 37
Figure 28 API project Playout. ... 37
Figure 29 JS docs for PVO Post Swagger UI ... 38
Figure 30 Swagger UI for the API outlined in previous figure. .. 38
Figure 31 Web App Overview page, original wire frame design. .. 39
Figure 32 Navigation widget for each Installation. ... 39
Figure 33Pasteurizer data in value element. ... 40
Figure 34Power meter Data in Value element. ... 40
Figure 35 Date widget at the top. .. 40
Figure 36 Web App Status page original wireframe design. .. 41
Figure 37 Web App Actual Screen with Trends. .. 41
Figure 38 Proposed Android App Screen ... 42
Figure 39 Android application Installation screen floating action button for NFC scanning. 43
Figure 40 Live PVO data. ... 43
Figure 41 Snippet of Code that Triggers a read of 32 bytes from address 0, when the on Tag

discovered event is triggered. ... 44
Figure 42 Snip of Write Tag Routine .. 44
Figure 43 init.d config file for the pyio service .. 45
Figure 44 enabling the service. ... 45
Figure 45 Starting the service. .. 45
Figure 46 Webserver Process Pointer inside PyIo main file with shared memory space as argument. 46
Figure 47 Declaration of Shared memory variable. .. 46
Figure 48 Writing the Data to the Shared memory for the Web server. ... 46
Figure 49 Webserver Home page route handler. .. 46

Pg. 7

Figure 50 What the user sees on the home page. .. 46
Figure 51 Installing latest node Version using NVM ... 47
Figure 52 using NVM to select latest version of node. ... 47
Figure 53 API server starting in PM2 ... 47
Figure 54 Web Server Start Script. ... 48
Figure 55 PM2 Status after running script. ... 48
Figure 56 Sveltkit Data set select solution. ... 48
Figure 57 Realtime data on app and desktop. ... 49
Figure 58 Function block in use Codesys 3.5 ... 51
Figure 59 Swagger UI landing page. .. 61
Figure 60Example of Swagger UI testing of Command Data Object (CDO) get. 61

1.0 Introduction

Page 8 of 63

1.0 INTRODUCTION

The purpose of this document and project is to showcase the range of skills and technologies

that I have learned and absorbed over the duration of the H Dip in computer science in SETU.

As well as some other skills that I have gained through independent learning over the last two

years.

1.1 Background

I graduated WIT with an Honours B-Tech in Electronic Engineering in 1997 and had not

returned to third level education, until undertaking this course in 2021. For over twenty years

I have been working with a small team of engineers in a company in Wexford providing

automation control and instrumentation solutions to customers in a wide variety of areas

ranging from SME, multinational and Semi State sector.

For that last number of years, the number of customers who want a more data focused

element to their control systems has grown significantly. Also, the capability and

sophistication of the Programmable Logic Controllers we use has also grown substantially. I

believe it’s useful for us to investigate other programming solutions outside of traditional IEC

61131-3 languages.

I believe there is a need for our company to be able to update our offering in this area to cater

for existing customers and to help us attract new customers.

1.0 Introduction

Page 9 of 63

1.2 Generalized Customer requirements

To allow me to proceed with the project outside of an NDA I have put together several

customer requests and generalized the various requirements. These requirements are as

follows.

Customer A:

Have several small IO count process control machines:

They would like it if their customers could log into a portal to view the status of their

machines mainly and start and stop the process remotely if possible.

“If they could do that on an app that would be great”. (Customer A)

They have, say for example, five key process values that they would like to be able to display

for each of their machines. They would like to be able to log in and see all their machines’

current and previous values and to allow their customers to be able to login and view their

machine/machines as well.

The data in this case will come from the control PLC on newer machines but they would like

to be able to retrofit older machines.

Customer B:

Have an existing SCADA application to monitor their factory but would like to be able to

chart and display certain KPIs live and historical on a dashboard to the wider group

management outside that plant.

They would also like to be able to send E-Mail and SMS alerts to maintenance personnel in

the event of certain alarms being raised and escalate those alarms in the event of the alarm

not being acknowledged.

Communications from PLC/SCADA is over fixed broadband.

As stated, B have a large site, and would like to be able to add alarm messaging and tracing

but for the moment are focused on power consumption in various areas of their factories, they

would like to be able to log into and view power consumption totals and trends for a period

ranging from hours to weeks.

Their data will come from an existing PLC/SCADA connection to power meters and IO.

Customer C:

Have several control systems already reporting into their existing web portal but would like

to expand into monitoring new sites using a reporting solution that doesn’t require a full

control system but still maintains the flexibility to use their existing portal.

Communications is over fixed broadband with a mix of mobile data.

They are keen to have the data uploaded in such a way as to make it available to their existing

front-end developer.

Customer D:

Have a complex mobile control system that requires data to be sent back on a timed and event

driven basis to a portal so that they can monitor machine location, the status of process

consumables and any alarm events on the machine.

Communications is over mobile broadband.

They are looking to receive process events and reports from the system which will be of

varying types.

1.0 Introduction

Page 10 of 63

1.3 Project Aims and Scope

The aim of this project is not to solve all customers’ wishes or to provide the ultimate IIOT

solution if one exists, but to put together the makings of a cost-effective EDGE to Cloud

solution, that can be used as a solid foundation by us to offer our clients a RAD solution to

meet and hopefully exceed most of their requirements.

Tasks to Accomplish.

• Installation or Site level: marshalling the data and buffering it for dispatch.

o Reading the data from the Fieldbus/PLC/SCADA and sending it in a

controlled manner to the Back end.

• The back-end Level: receiving and storing the data from each installation.

o Acting as a go between the Front End and the Installations in the field.

• The Front-End Level: Providing the user interface that allows the user to Chart Plot

and view the data from the Installation.

The project implements a common backend framework that allows the different installation

types to exchange information in a defined way with it, and then to use a customizable front

end based on customer requirements.

2.0 Market Research

Page 11 of 63

2.0 MARKET RESEARCH

When reviewing recent trends in control and automation engineering one of the recurring

themes is the convergence of IT/OT. At a recent European industry showcase SPS Drives in

Nuremberg Germany the top two industrial automation trends, according to research by IOT

Analytics were Solutions that enable flexibility and IT/OT convergence. This was ahead of

AI trends at five and six.

Figure 1 ‘Top 10 Industrial trends 2023’ (Taparia, 2023)

2.1 Terminology and Theory

When starting down the IOT/IIOT development road it doesn’t take long for some new terms

and phrases to appear I have heard of the cloud ok but, FOG, EDGE thick and thin, new to

me.

An article on TechTarget describes EDGE computing as ‘…a distributed information

technology (IT) architecture in which client data is processed at the periphery of the network,

as close to the originating source as possible.’ (Bigelow, 2021)

My originating source in the kCloud project example is the pasteurizer.

The article goes on to say ‘One of the easiest ways to understand the differences between

edge, cloud, and fog computing is to highlight their common theme: All three concepts relate

to distributed computing and focus on the physical deployment of compute and storage

resources in relation to the data that is being produced. The difference is a matter of where

those resources are located’ (Bigelow, 2021)

In an article by Moxa a specialist in industrial conductivity they say ‘Industry experts have

warned that the cloud-computing models deployed in many IoT systems today are ill

equipped to deal with the volume of data generated by the billions of IoT devices that are

slated to go online in the next couple of years. The need for instant decision making coupled

with concerns regarding data security has led the early adopters of the IoT to consider

alternative computing models.’ (MOXA, 2019)

2.0 Market Research

Page 12 of 63

This is where it all gets a little bit FOGGY, the FOG computing model is based around

removing the need for vast quantities of data to be sent to the cloud for processing and remote

decisions being made by closer to the edge with therefore reducing the data bandwidth

required to the cloud.

Figure 2 Cloud v Fog (MOXA, 2019)

There are also some drawbacks to putting all your eggs in the cloud basket, at least one of our

customers has stated their concern with putting all the data in the cloud with the what if I

have no internet for a week and I need to run my equipment and get the data, can I? This

downside is also covered by Clive Longbottom in his article for Tech Target IoT agenda

when he outlines the advantages and disadvantages of edge versus cloud computing

concluding that,

 ‘..The trick is to implement a well-blended mix of an underlying cloud platform combined

with the judicious use of edge computing to meet the organization's needs.’
(Longbottom, 2021)

He also goes on to further state ‘Herein lies the dichotomy: Trying to fully manage an IoT

environment through a cloud-only platform isn't the optimal way of doing things.’
(Longbottom, 2021)

So, what I can conclude from this is that the idea of getting information into the cloud is an

essential part of all IOT systems but when planning a solution, it is important to provide the

correct solution not just the cloud solution.

2.0 Market Research

Page 13 of 63

2.2 Product research

Before development started, I took a closer look at some of the existing products in the

marketplace and what they were offering. Having used the Raspberry Pi during the course I

started by looking into the Pi as an industrial platform rather than the traditional PLC, this led

me to a German company called Kunbus.

Kunbus is the company behind the “RevPi” P.L.C which uses the power of the Raspberry Pi

and wraps it in an industrial PLC or in their words ‘Industrial Raspberry Pi for control and

IIOT Projects’

(Kunbus gmbh, 2023)

They allow OEM manufactures to own brand the RevPi device for their specific application.

Doing some further internet research into this led me to a company CloudRail.

‘CloudRail is a fully managed solution to acquire data from industrial environments,

preprocess it locally and send it to any cloud.’

(CloudRail, 2023)

They use the RevPi to connect IO Link sensors to the cloud supporting AWS Azure IBM,

SAP and more cloud providers.

Their ongoing cost starts at €24 per month per unit with a minimum of 2 units required plus,

the cloud rail box hardware and IO link master with a cost of €787.10 and €418.580 list at the

time of writing Jan 2024 all prices being ex VAT and discounts. (CloudRAIL Gmbh, 2023)

Support and Development are in Germany there is no option to take the system and run

locally on private server if required or to export data to an existing platform dashboard.

Another solution that appeared in my search windows was Cumulocity from another German

provider.

’Cumulocity IoT platform simplifies things for you with self-service tools and a

configuration-driven approach. Cumulocity IoT is a leading self-service IoT platform, top

rated by independent analysts, with fast ROI.’ (Software AG , 2024)

This is a large platform concentrating on creating a code free solution, it does offer a lot in

terms of getting data from the EDGE to the center of the cloud and has a large GitHub

repository with “example applications created using Cumulocity SDK”. (Software AG, 2024)

There was a limited trial version but no public pricing information available, they did offer

On-premises or dedicated cloud deployment for the enterprise-based clients.

Another company that came up was Trendlog they are a Danish company that supply a

product that captures information from machines and either displays it in local real time or

transmits it to the cloud for further processing.

’When you need to gather information from production machinery, robots, or sensors, we

have models for both the simple and more advanced installations.’ (Trendlog, 2024)

What caught my eye was their TL Collect UNO product which is a standalone data collector

that can transmit data from up to eight machines. This data is then sent to a Cloud API to be

processed into trend dashboards, maintenance planners and other web data tools.

The final product I investigated is from IFM electronics and is called Moneo, they have

developed a very nice back-end portal and hardware interface for their existing range of

sensors. To quote from their website ‘As an IIoT platform, ifm moneo combines the level of

operation technology with the level of information technology. The sensor data generated in

2.0 Market Research

Page 14 of 63

the production plants can be read and processed easily and used as a basis for sustainable

corporate decisions.’

(IFM Electronic, 2024)

Support and development are available in Ireland but there is limited self-hosting support and

integration into existing SCADA systems with an emphasis on larger ERP systems.

What I found is that there are products out there that could meet some of our customers’

requirements, from my investigations a lot of them require connecting to a bespoke portal or

buying bespoke hardware and most of the solutions technical support is outside of Ireland.

I believe that incorporating a flexible edge to cloud solution can greatly enhance the service

we offer our existing customers and help us compete in the marketplace.

 3.0 SYSTEM OVERVIEW

Page 15 of 63

3.0 SYSTEM OVERVIEW

The project implements an example project that will cover as many of the generic customer

requirements as possible.

3.1 Application in brief

Figure 3 Initial Solution Proposal as submitted.

3.2 Real World Application

To better visualise the solution, I use the example of a batch pasteurizer i.e. a machine that

will heat a batch of liquid to a setpoint temperature hold it there for a predetermined amount

of time and then release it.

An agitator for mixing the liquid run for 1 minute every 3 during the cycle and can be

manually run at any time outside of the pasteurization sequence.

Figure 4 Python Routine that runs for one in 3 minutes.

Our application records the temperature and level in the tank, the state of the agitator and

heater.

The user will be able to open a local web page hosted on a FOG Node, which will give them

a summary of the status.

They are also able to log on to a cloud-based portal to access status and trend information for

the process and allow them to start and stop the machine.

 3.0 SYSTEM OVERVIEW

Page 16 of 63

3.3 Detailed Overview

Figure 5 Overview of Proposed Application

4.0 Design and Analysis

Page 17 of 63

4.0 DESIGN AND ANALYSIS.

The key element of this project is data, so I started my design process by looking at the data

models we are going to need.

4.1 Data models

All customers will require some type of user data for logging in and account verification.

o User Data –

o Logon Information: User Identifier, Username, Email Address, password etc.

From talking to customers the information, they are looking for can be broken broadly into

two types

o Process Values –

o Numeric values that are assigned to a particular sensor or single measurement.

▪ E.g., Temperature, Pressure, Volume Power Consumption etc.

o Data Values –

o Data that is a summary, report and event or a log of some kind a structure in

and of itself.

▪ E.g., Job cards, Alarm Events,

4.1.1 User Data Model

The following UML model shows the user data model as envisaged allowing for remote

client connection types of administrators at group and global level in the future.

Figure 6 User Data Model

4.0 Design and Analysis

Page 18 of 63

4.1.2 Process Variable Model or Object (PVO)

The process variable model is used to describe a single value or KPI, at a given point in time.

Figure 7 Process Variable Model

The PortID, is the port id on the IO link master e.g.1 to 4 for the AL1350, NodeID is the last

octet of the Ip-address of the IO-link master or if no master is present, it can be the last octet

of the router ip-address.

4.0 Design and Analysis

Page 19 of 63

4.1.3 Process Data Model or Object (PDO)

The process data model is used to record event data such as report information or alarms at a

given point in time, e.g., process starts, or end reports, operator entered information or event

data.

Figure 8 Process Data Model

There are two PDO, data structures implemented in the batch pasteurization example.

4.1.3.1 Example Specific data for the PDO JSON

This will vary depending on the specific application in this case we have a pasteurizer.

Batch Start

The batch start JSON consists of the following information.

Batch Start : UTC time of Batch Start.

Start Temperature : Temperature sensor value at the start.

Start Volume : Level sensor scaled volume value at the start.

Hold Temperature : Temperature Batch must reach.

Hold Duration : Time we hold temperature for.

Batch Stop

The batch start JSON consists of the following information.

Batch Start : UTC time of Batch Start.

Hold Start : UTC time of Hold Start (hold is when setpoint temperature is

reached).

Batch Stop : UTC time of Batch Stop.

Stop Temperature : Temperature sensor value at the start.

Stop Volume : Level sensor scaled volume value at the start.

Batch Duration : Time Batch was pasteurised for.

Batch Code : 0=Pass, 1=Stopped by User, 2=Failed to heat, 3=other Fail.

4.0 Design and Analysis

Page 20 of 63

4.1.4 Control Data Model or Object (CDO)

This data model is used to send control information from the back end to the EDGE/FOG

device.

Figure 9 Control Data Model

In the JSON object, value is determined by the value enumeration, and will be either String

Boolean, Float, or Integer.

4.1.5 Installation Model

This is used to hold the details of each site as follows,

Figure 10 Installation model.

4.0 Design and Analysis

Page 21 of 63

4.2 Hardware.

This project utilizes the hardware currently available to me. From the customer requirements

and market research we will use an IO-Link connection for sensors and field equipment.

‘IO-Link is a serial, bi-directional point-to-point connection for signal transmission and

energy supply under any networks, fieldbuses, or backplane buses.’

(IO-Link Community, 2018)

• IO-Link Master

o For testing purposes, I have sourced a 4 port IO link Master from IFM

electronics an AL1350 ‘For connection of up to four IO-Link devices’….

Reliable transmission of machine data, process parameters, and diagnostic

data to the IT environment’.

(IFM Electronic, 2023)

• 4G Industrial Router

o I will use a Teltonika RUT 956 Industrial cellular router which has a Linux

based OS (Open Wrt) than can run scripting languages such as Python.

It is ‘a compact industrial 4G (LTE) router equipped with 4x Ethernet ports,

WiFi, Dual-SIM, GPS, an I/O connector block, RS232/RS485 and RutOS

software for advanced networking solutions.’

(Teltonika, 2024)

• Sensors

o I will be using several sensors to give a range of value types all these sensors

will be IO link enabled, values measured consist of temperature, conductivity,

level, and pressure.

In terms of the hardware, I have used most of it before but prior to doing this course had only

ever used discrete and hardwired version of the sensors and never the IO-Link functionality

for a customer product. The router itself was only ever used as a router and was most

certainly never seen as a possible process controller…… Until now.

4.0 Design and Analysis

Page 22 of 63

4.3 Software.

• The following diagram graphically illustrates the software technologies used.

A diagram of the completed software with reference to the above planned can be found in

Appendix E

Figure 11 Software Technologies used.

4.0 Design and Analysis

Page 23 of 63

4.3.1 New Technologies and platforms.

This project builds on several new technologies and greatly expands on the knowledge gained

during the course.

Using Python on the fog node to do the control is a complete break from what would

normally be done in our company, but it is a great opportunity to assess its potential for

process control and for me to develop further my proficiency in it as a development language.

The following table outlines some of the technologies used in the project that are either

completely new to me or are used in a different way.

Name Previous course use Use in this application

OpenWRT None
Reduced lightweight Linux based OS used on
the RUT95x routers.

Python
Introduced to me during the
course and used for on some as-
signments in IOT and DevOps

Greatly expanded my knowledge here, run-
ning as a process / subprocess on OpenWrt.
As well as the use of User defined types enu-
merated lists.

Flask
Introduced to me during the
course and used for on one as-
signment in IOT

A good fit in this application because of it’s
light footprint and flexibility. Used here for
multiple pages and API endpoints hosted on
the router.

SQLite None

This is the backbone database of the local Fog
Node. The project uses the sqlite3 library for
python which is a ‘DB-API 2.0 (PEP 249) com-
pliant interface to the SQLite library’
(python.org, 2024).

AWS EC2
Introduced to me during the
course and used for on some as-
signments DevOps

I chose to use Ubuntu Linux as the platform
here running on an Amazon EC2 instance ra-
ther than using AWS Linux as we did on the
course. This will allow me to use a stand-
alone ubuntu server in the future if required.

Node
JS/Express

Used Node JS and HAPI during
Full Stack development use with
express as API server is new.

Full setup of Node JS on Ubuntu, develop-
ment of API backend and DB integration.

Mari-
aDB/MySQL

My SQL introduced during Data-
bases module. Maria DB

This project was to originally use MariaDB which
‘Created by MySQL’s original developers, MariaDB
is compatible with MySQL and Oracle, and is
guaranteed to always be open source…..’
(MariaDB, 2024).
However, I found during initial testing on Linux
that the JSON capabilities of MySQL 8.0 worked
better so I used MySQL8 as the backbone data
base of the backend server.

Svelte
Used during Full Stack develop-
ment

On this project I am using the Svelte framework
to develop the foundations of a full featured
dashboard for the project. The user interface on
the front end while simple to use, uses accordion
plugins, Check box controls and drop-down lists
that I have not used before in this framework.

4.0 Design and Analysis

Page 24 of 63

Kotlin
Used during Mobile develop-
ment

To make the overall project more saleable to cus-
tomers I have included some modifications to the
Kotlin based application developed for ‘Mobile
applications Assignment ‘ (Roche, 2024)
I modified the previous application to include an
NFC read interface to select /check in at the instil-
lation. As well as modifying the UI for this applica-
tion and converting the app to use the kKloud API
back end.

Table 1 Software technologies used.

One of the key elements of this project I have not investigated before is the inclusion of a

customizable JSON object as a JSON type column in the SQL tables.

According to Dave Stokes on open source .com ‘MySQL's addition of a JSON data type

makes the relational database easier to use and blurs the lines between SQL and NoSQL

databases.’ (Stokes, 2017) turns out he is correct.

It allowed me to develop a fixed upload framework around a flexible loose formatted JSON

NoSQL data type.

4.3.2 Tools and IDE

The following tools are used in developing this project.

Name Function
Used Be-

fore
Notes

VS Code IDE for Python and JS development Yes
Ended up using for all devel-
opment.

Postman Used to test API local and remote Yes
I used this at the start but
once the Swagger UI was im-
plemented not as much.

Win SCP
Used in transferring app files to
RUT95X

No

Verry useful tool in the end I
used it to deploy to the De-
velopment Server and local
router.

DB
Browser
for SQLite

Used to inspect and manipulate data
in SQLite

No

Used at the start and during
the project as a quick simple
tool to manipulate the SQLite
DB.

DBeaver DB browser and tool for Linux /windows No
Comprehensive lineup of tools
and great data visualization but
has a steep learning curve.

HeidiSQL DB browser and tool for Windows Yes
Not as advanced as DBeaver but
covers what I need good visuali-
zation of SQL queries.

CLI MySQL
The only way to setup the data bases at
the start and configure them.

No

I prefer the GUI tools but luckily
there are lots of online tutorials
and instructions, so job was not
too hard in the end.

Table 2 List of development tools used.

4.0 Design and Analysis

Page 25 of 63

4.4 Control Philosophy.

As stated in section 3.2 I am using a real-world example of a pasteurizer to develop the

solution.

The following section shows the inputs and outputs for the application.

4.4.1 Example inputs and outputs

Inputs

Index Description Connection Protocol PVO Index

AI_00 Level IO master Node 1Port 1 Io Link 0

AI_01 Conductivity IO master Node 1 Port 2 Io Link 1

AI_02 Temperature IO master Node 1 Port 2 Io Link 2

AI_03 Volume IO master Node 1 Port 2 Io Link 4

DI_00 Agitator Active IO master Node 1 Port 3 Io Link 3

Table 3 Inputs

Outputs

Index Description Connection Protocol

DQ_00 Agitator IO master node 1Port 3 Io Link

DQ_01 Heater IO master Node 1 Port 4 Io Link

Table 4 Outputs

Soft Inputs (Key Presses)

Index Description

SDI_00 Start Process

SDI_01 Stop Process

SDI_02 Start Agitator

SDI_03 Stop Agitator

Table 5 Software /Trigger inputs

4.0 Design and Analysis

Page 26 of 63

4.4.2 Network Layout

Figure 12 Network and Sensor Layout

4.0 Design and Analysis

Page 27 of 63

4.5 Project Management

This section outlines the sprints involved in putting the project together. To help manage the

project I used MS Teams, I setup a separate channel for the project and added a planner tab to

display the tasks involved. I chose teams for several reasons, although my company don’t use

it to manage projects this is a good opportunity to try it out determine suitability.

Figure 13 Screen shot from planning board in MS Teams, Feb 9th, 2024.

A ramp phase for the project was carried out between December2023 and the end of January

2024 where hardware and software platforms and tools were selected, and initial scratch

coding was completed.

Project implementation took place over a ten-week time frame commencing on the 29th of

January and to be completed by the 29th of March to meet submission deadlines. This was

divided up as follows, into four two-week sprints with a week of contingency at the end,

which was needed.

o Fog 1- Sprint 1, Jan 28th to Feb 9th

▪ Get Data from Sensors into Fog Node local Database.

▪ Local web service to display sensor Data.

o Fog 2 – Sprint 2, Feb12th to Feb 23rd

▪ Sensor Data from the Fog node and send to cloud backend.

▪ Local web Service to Start and Stop Process

o Coud 1-Sprint 3, Feb26th to March 8th

▪ User web app data Dashboard

• Current value Overview page

• Grid display of latest values

• Historical trend.

o Coud 2- Sprint 4, March 11th to March 22nd

▪ User web app data Dashboard

• Start Stop Process

▪ Android Native App

• NFC scan tag on Pasto and show current values.

March 22nd to March 31st was debugging and contingency.

5.0 Functional Design Specification

Page 28 of 63

5.0 FUNCTIONAL DESIGN SPECIFICATION

This section outlines how the overall application is put together.

5.1 Edge to Fog Development

This section outlines the work involved in creating the Fog Node, this is the Python part of

the application that runs on the RUT95x device and connects to the IO-link master.

I chose python over Node Red, Bash scripting or LUA because of its low overhead,

established community, and ability to run on a wide variety of operating systems, and

because of its portability between platforms.

During the RAMP phase of the project I had initially planned on using files to store the PVO

and PDO data as JSON but after doing some initial testing on that I quickly decided there

must be a better way so after a not so brief internet search I came across SQLite ‘..a C-

language library that implements a small, fast, self-contained, high-reliability, full-featured,

SQL database engine. SQLite is the most used database engine in the world.’ (SQLite, 2024)

After doing some tests with python and the SQLite python sqlite3 library I confirmed SQLite

as my FOG DB backbone.

A flow chart outlining the python program flow within the fog node can be found in

Appendix A – kEdge Program Flow chart.

I divided the python program into four sections/processes.

5.1.1 Main

The main process carries out the following operations,

• Read the PVO inputs at a maximum rate of every 300ms, this is settable in a local

“.env” config file. If there is a change of value that value is logged to the DB for live

local display.

• Log the PVO variables at a set interval for uploading to the cloud.

• The application will record a PDO when the sequence starts and stops.

• The main program has a minimum cycle time which can be set to minimise loading

on the io-link bus and controller itself.

The main process code runs in a continuous loop, until the application is terminated.

I use as SignalHandler Class with a can_run flag to capture the shutdown request and force

the application to stop.

Figure 14 Signal Handler Class

I used this method to try and carefully stop the process after doing some research on the topic

and coming across a good step by step guide by Augustas Pelakauskas called ‘How to Run

Python Script as a Service (Windows & Linux)’ (Pelakauskas, 2022)

5.0 Functional Design Specification

Page 29 of 63

The Python application auto starts as a process on the router operating system using a basic

procd script stored in the /etc/init.d/ , see section 6.6.1 for more.

The inputs from the IO-Link master are read by means of the API server on the master itself

and decoded as per the data sheets for the respective devices.

All API requests use the standard python requests library.

5.1.2 Local Webserver Process.

Local web pages allow the user view input and output status and any error messages and

trends on the local fog node this can be used for monitoring or back up in case of internet

outages. In the case of this application, it is also used to Stop and Start the process.

There appears to be two main frameworks for developing webserver application on Python

Flask and Django. In ‘Django Vs. Flask: Understanding The Major Differences’ (Simplilearn,

2023) gives a great overview of both frame works the pros and cons etc.

Given the small size of the fog node and the fact that I failed to get Django to load on

OpenWrt then Flask it is. I have also had some experience during the course using Flask to

develop a web page on a raspberry pi for ‘Systems and Network assignment IOT’ (Roche,

2022). This however was a verry different beast.

A wireframe diagram of the original design of the landing page design is shown in the

following figure.

Figure 15 Local web overview origonal wireframe.

5.0 Functional Design Specification

Page 30 of 63

Figure 16 Final Overview page.

The webserver hosts a number of API interfaces that allow the local client side scripting to

perform actions on the application, table of these API calls is a follows

Method Path Arguments Result

GET localhost/list/read None JSON Object containg the current
PVO values.

GET localhost /data/read{
pdoKey , StartDate ,
StopDate }

pdoKey-title of
variable to be
read

StartDate - Start
date time for
data

StopDate – End
Datae time for
Data

Returns a JSON array with the of
value, title and event date for
the given input arguments.

POST localhost /trigger/set{
setIndex,setValue)

setIndex – the
index number of
the value to be
triggered.

setValue – the
value 0 or 1 to
be set to the
trigger

The Web server reads a triger
value from a data table in the
range 0 to 7. If the value is 0 the
application can perform som
action start stop agitation Start
stop the process etc.

For the demonstration
application the trigger bits are as
shown in table 5

Figure 17 Fog Node Web server API calls.

5.0 Functional Design Specification

Page 31 of 63

5.1.3 API Web Client Process

This process reads the local database and sends data up to the kCloud server.

It checks the PVO and PDO tables for data outstanding to be uploaded, this is done by means

of a status field which is the HTML status of the upload API call to the server.

Figure 18 SQLite PVO table showing data note Status field values 200.

The service runs on a timed basis so that information is only sent to the cloud at the setpoint

interval.

Figure 19 Example of a method that uses the Python Requests library to post information to

the API backend.

One of the challenges in getting the Web client process to function was coming to grips with

sending the data to the API. During the RAMP phase I experimented with the Python

Requests: ‘HTTP for Humans’ (Reitz, 2019) library and I was able to adapt the calls and set

headers etc to enable the data to be uploaded.

5.1.4 API GET Client Process

When I originally designed the application and developed the kEdge flow chart as shown in

Appendix A, I envisioned an API GET client as a separate process that would call the get/set

CDO API on the back end update the software triggers accordingly allowing the user to

control the system remotely.

To minimise separate processes interacting with the database and to minimise the amount of

coding I chose to add this functionality to the API Web client process instead.

5.0 Functional Design Specification

Page 32 of 63

5.1.5 Code Layout and Notes

The Python application uses the following folder layout.

Figure 20 Python Folder layout.

User Defined types and

Classes

Flutter Templates

Flutter Static Files

Core files

5.0 Functional Design Specification

Page 33 of 63

The processes follow a state variable layout whereby they run based on an enumerated state variable

these are declared in ../inc/udt/types.py.

Figure 21 Main step type enum.

To interact with the SQLite data base, I created a dbclass object that can be declared inside

each process that requires DB access.

This Class can be found in ./inc/udt/dbclass.py

One of the advantages in using and SQL database on the FOG node and having to write

simple API handlers using flask, was that when it came to the back end some of the heavy

lifting in terms of writing SQL queries had already been proven.

Figure 22 A screen snip from early on in project development of handing JSON in SQLite

5.0 Functional Design Specification

Page 34 of 63

5.2 Backend Development

This application is responsible for taking in the information from the fog nodes, allowing

access to the data from front end web app and user authentication.

The backend development is implemented in Node JS Express and is hosted on a Linux

server and uses MySql as the back-end data base. The Linux server is hosted on an EC2 AWS

instance but can also be hosted on a local in factory server.

Why chose Express with Node JS? Having used HAPI during the course, my initial thoughts

were to go down that route but during the RAMP phase of the project I experimented with

Express just to do API’s and test ideas. I did some research and came across many articles

such as ‘Express vs. Hapi: The Battle For Being Best Node.js Framework’ (Dhaduk, 2021)

which attempted to clear things up and to me in the end, express did what I needed it to do so

I stuck with it.

Interaction to the server is via Restful APIs, API calls outside of user validation is as follows,

Method Path Arguments Result

POST … /pdo JSON
formatted
PDO model.

OK if stored ok.

POST …/pvo JSON
formatted
PVO model.

OK if stored ok.

GET ../cdo/{id} Instilation id
of the Fog
Node

If there is a CDO
waiting for the node
then a JSON
formatted cdo model
is returned.

POST ../cdo/{id} Instilation id
of the Fog
Node,JSON
formatted
cdo model

OK if stored ok.

GET ../pvo/{id} Instilation id
of the Fog
Node

A JSON array of the
latest updated PVO
values.

GET ../pdo/{id,startDate,StopDate} Instilation id
of the Fog
Node, a UTC
start date
and stop date

A JSON array of PDO
for the given
instilation id
between Start date
and Stop date.

GET ../pvo/titles/{id} Instilation id
of the Fog
Node

A JSON array of all
unique PVO titles for

5.0 Functional Design Specification

Page 35 of 63

the given instiation
ID.

GET ../pvo/{id,title,startDate,StopDate} Instilation id
of the Fog
Node, the
title of the
process
variable to
read and a
UTC start
date and stop
date

A JSON array of
values for the given
instilation id and
process variable
between between
Start date and Stop
date.

GET ../read/status/{id} User ID Returns a JSON array
of

All API specifications are documented using OpenAPI Specification (formerly Swagger

Specification).

Some screen shots of the Open API docs can be found in Appendix C

One of the challenges faced when developing the back end was the level and type of SQL

queries needed to interact with the JSON data type.

Fortunately, there are several SQL commands that allow interaction with JSON types. The

MySQL documentation proved to be a great source here.(MySQL, 2023)

Remember the PVO format as outlined in Section 4.1.2 of this report.

Figure 23 PVO JSON Object

This yielded a data table as visualized in the following figure.

5.0 Functional Design Specification

Page 36 of 63

Figure 24 Snip from PVO data table showing various PVO values.

The jData field is the embedded JSON data that describes the process variable being

uploaded.

For the data shown above the units are mm (milli meters) for level, uS (micro siemens) for

conductivity, C (degrees Celsius) for temperature, L (liters) for Volume and QI (Digital

input) for Heater and agitator.

The following SQL extracts a list of all the PVO titles being uploaded.

Figure 25 SQL to Extract all PVO titles.

We can use the JSON extract SQL within more complex statements such as the one shown

below which extracts the average hourly temperature value.

Figure 26 SQL query to extract average hourly temperature data.

5.0 Functional Design Specification

Page 37 of 63

The following figure shows SQL being used in a routine that extracts PVO information from the

database for a particular installation, title, and time.

Figure 27 API data base model showing SQL in use.

Before I implemented the Swagger UI, I implemented some local API tests using Mocha to test the

database connection and authentication these can be found in the test subfolder.

Figure 28 API project Playout.

The API implements JWT authentication, I tested this for several routes mainly within user

management as well as PVO write.

5.2.1 Swagger UI

When looking for a way to best utilize my time for both documenting then implementing the

APIs I decided to use Swagger UI to try and achieve both in the shortest time possible.

Although I found the JDocs cumbersome to work with, after a while you figure out where

you are going wrong and can make good progress. Googling was helpful as always, but one

web page I found helped a long way to get started ‘How to Document an Express API with

Swagger UI and JSDoc’ (Bartolo, 2020) gives a good introduction to the Swagger UI.

Data base Models

Main JS Express file

Swagger UI settings

File

5.0 Functional Design Specification

Page 38 of 63

I wrote the jdocs information in line with the code for easy access rather than in separate

files, as shown in the figure below.

Figure 29 JS docs for PVO Post Swagger UI

 The above code is compiled via the swagger UI to the document shown below,

Figure 30 Swagger UI for the API outlined in previous figure.

I used the Swagger UI extensively to test the functionality of the operation of the API and the

validity of the contained data.

5.0 Functional Design Specification

Page 39 of 63

5.3 Front End Web Application

The web application is written using the Svelte-kit frame work and Bulma CSS for most user

style elements. It enables the user to,

• View online / offline systems.

• Select an installation to show status trends and generate reports.

I investigated several downloadable Svelte kit dashboard templates, checking to see how they

looked and if they would suit my design idea, in the end, I chose none of them and opted to

utilise simple Bulma columns for layout and design reuseable widgets that would suit the

needs of the project and offer a broader learning experience,

One of the Bulma elements used is accordion navigation. I

developed the panel widget using this which allows the user to

select the installation by name. It then expands into a drop-down

list with check boxes to allow selection of PVO.

Figure 32 Navigation widget for each Installation.

Figure 31 Web App Overview page, original wire frame design.

5.0 Functional Design Specification

Page 40 of 63

Another element reused in the Web app is the value box

used to display latest PVO values note the title, vinit

and Value all come from the JSON jData field of the

PVO.

For trending I used frappe charts from Frappe ‘.. a remote technology company committed to

building delightful applications and services’ (Frappe, 2024). I constructed a common date

range widget to select the data range for the chart with common ranges available at the press

of a button.

Figure 35 Date widget at the top.

Figure 33Pasteurizer data in

value element.

Figure 34Power meter Data in Value

element.

5.0 Functional Design Specification

Page 41 of 63

Figure 36 Web App Status page original wireframe design.

The final design of the page uses tabs to select various functions, this led to a less cluttered

simpler layout.

Figure 37 Web App Actual Screen with Trends.

For the most part the web application is Server side rendered with svelte kit loading the pages

first and sending to the browser for display.

5.0 Functional Design Specification

Page 42 of 63

5.4 Native Android App

This original plan had been to radically alter the application developed for ‘Mobile

Application Development Assessment.’ (Roche, 2024) .

Not all the functionality intended was added. This was due to a business decision to

concentrate on adding an additional possible implementation example and spend more time

on developing that instead of spending it on the Android application.

There was some additions and modification done which are included with the project.

namely to communicate fully to the kCloud back end of the application via volley as well as

take the information from the PVO and display on the app. A rudimentary NFC tag scan

function was also added.

Figure 38 Proposed Android App Screen

5.0 Functional Design Specification

Page 43 of 63

Figure 39 Android application Installation screen floating action button for NFC scanning.

Figure 40 Live PVO data.

5.0 Functional Design Specification

Page 44 of 63

On researching NFC I found a great article on medium .com by Carlos Javier Torres Pensa

Where he states that NFC ‘allows us to wirelessly pair and connect devices over short

distances instantly.’ (Pensa, 2021). If the installation ID is programmed into the NFC chip

then that can act as a locater for reporting in the future e.g.

• I can know a user has been in proximity to the installation as the NFC tag scanned tag

is mounted in place.

• In the future I can send up location reports for sites that maybe don’t have GPS or No

coverage, eg underground maintenance panels etc.

In his article Pensa goes on to give an example of writing to an RFID tag and reading back

however he uses a different tag type then the one I have. The tag type I have is ISO-15693

(ISO, 2019), which is catered for directly in android studio by means of the ‘NfcV class’.

(Android Developer, 2024) .

After doing, some more investigating and reading lots of online forms I developed enough

knowledge to be able to write the ID number of an instillation to the RFID tag and read it

back. The NfcV class transceiver method receives a byte array of commands depending on

the tag and replies with a byte array.

Figure 41 Snippet of Code that Triggers a read of 32 bytes from address 0, when the on Tag

discovered event is triggered.

Figure 42 Snip of Write Tag Routine

6.0 Issues and Resolutions

Page 45 of 63

6.0 ISSUES AND RESOLUTIONS

6.1 Fog Node Issues

6.1.1 Auto starting on Open WRT

My initial python development had been completed using the Linux Mint OK on a local

virtual Machine, this worked well, and I was able to setup auto restart using systemd. When I

moved to the RUT95X and Open WRT no sysrtemd! Back to the drawing board, eventually

after what seemed like forever trying various scripts and hacks from far too many forms to

mention, I went back to the source and referenced the OpenWrt docs and found two articles

that steered me true.

The first ‘Managing Services’ (OpenWrt, 2023) and the second an example ‘Create a sample

procd init script’ (Oostdijk, 2024) combining bit from these and reacquainting myself once

more with the VI editor, I was able to write an init.d script and call it on startup.

Figure 43 init.d config file for the pyio service

Figure 44 enabling the service.

Figure 45 Starting the service.

6.1.2 Don’t mention the firmware!

The firmware for the router was updated to version 7.6.3 I thought I should update mine bad

idea, this caused issues when installing python and PIP as the router manufactures no longer

supported the Open WRT package repositories. So, I had to revert to a slightly older version

where the router manufacturer allowed updating of packages directly from OpenWrt.

6.1.3 Communication between sub processes

The python program uses process to manage the main sequence and web server separately

one of the issues with this is sharing data between them.

For example, I want to be able to show the status of the main task on the webpage, so I need

to share it between the main task to the web server task.

6.0 Issues and Resolutions

Page 46 of 63

The first versions of the program used a status table in the local db to store the information,

this worked but was resource hungry and lead to a lot of DB interaction.

I overcame this, after many hours googling and testing by using shared memory between

processes.

‘Python types can be converted to arrays of bytes and stored in a Shared Memory and read as

arrays of bytes and converted back into Python types.’ (BROWNLEE, 2023)

Figure 46 Webserver Process Pointer inside PyIo main file with shared memory space as

argument.

Figure 47 Declaration of Shared memory variable.

Figure 48 Writing the Data to the Shared memory for the Web server.

Figure 49 Webserver Home page route handler.

Figure 50 What the user sees on the home page.

6.2 Back end /Front End Issues

Leaving aside any coding issues one of the frustrating things about starting projects like this

is getting the environment right.

6.2.1 Node Versions

The latest version available for Ubuntu Linux via apt updates is v10.19.0.

 I needed v18.00.00 or more for the API back end. After more head scratching and googling,

I found a great tutorial by Brian Boucheron ‘How To Install Node.js on Ubuntu 20.04’

(Boucheron, 2023).

I decided to install Node Version Manager that would allow me to select and run various

versions of node on the server.

6.0 Issues and Resolutions

Page 47 of 63

Figure 51 Installing latest node Version using NVM

Figure 52 using NVM to select latest version of node.

6.2.2 More Start stop Issues.

One of the issues I came across again on the back end was auto starting the API and Web

Servers and keeping them running once I closed the SSH session.

I thought of using rc.local, that didn’t work I tried systemd but that gave me issues with the

wrong node versions AGAIN…

Enter PM2 ‘PM2 is a process runner, basically will keep your API listening even when you

end the SSH session with your Ubuntu server’ (JonathanSanchez.Dev, 2021)

The API server I could start directly by calling pm2 start src/server.js.

Figure 53 API server starting in PM2

I wrote a small script to start the Web Server as it was a little more complex.

6.0 Issues and Resolutions

Page 48 of 63

Figure 54 Web Server Start Script.

Figure 55 PM2 Status after running script.

6.2.3 Frappe Charts Datasets

One of the things I wanted to do was to dynamically add and remove data sets from the

current displayed chart.

If I removed a data set, the chart would not update and would also leave the entire web app

unresponsive. If I minimised the window or refreshed the page in the address bar the correct

chart would appear with the data set removed but the app was still unresponsive.

After hours of re referencing data and checking loaded data and trying different solutions. I

overcame it by simply having two charts in the page and using a toggle every time the chart

data was changed.

Figure 56 Sveltkit Data set select solution.

7.0 Reflection

Page 49 of 63

7.0 REFLECTION

If one was to google “how to eat an elephant” chances are you would get “one piece at a

time”. This project had a lot of moving parts, and I did somewhat regret taking on quite so

big an elephant. But in the end the job was done. I must really stick more closely to the

‘Scotty Principle’ (urbandictionary, 2005) .

I found Python to be a very adaptable language with great online resources. It allowed me to

develop code to run on both PC and Linux. Giving the benefit of being able to run on my

actual fog node and on the development PC.

Trying to shoehorn a control data capture and HMI application into a router took a lot more

effort than expected.

7.1 Project Goals achieved and not.

In terms of creating a foundation that can be built on for us to help customers achieve the

goals I set out at the start, I believe I have achieved a lot of what I initially set out to do,

• A Python based Fog Node Example machine with,

• data uploading in a defined controlled way to a,

• NodeJS Express API Server with MySQL data back bone to allow user

interaction via,

• A Svelte-kit based web app for desktop and

• A Kotlin Android application.

In those terms a success.

Figure 57 Realtime data on app and desktop.

I had initially planned on doing a lot more development on the Android application however

two main factors limited me in this.

The Fog node application when deployed on the router took a lot of time to get working

correctly. This was mainly due to the limited resources on the router coupled with the

demands I was placing on those resources. There was also a business need to develop a

7.0 Reflection

Page 50 of 63

function block in Codesys 3.5 that would work with the kCloud backend which took up the

time I had allocated to the android development, but as outlined in section 7.3 this is

something to be developed in the future.

Would I use Python as a control platform?

For a one off mainly Research and Development application yes, no problem its responsive

and straight forward to develop with lots of plugins and resources. Also, the flexibility to

offer customers local logging and full featured web servers is very attractive. It also has an

advantage of being cross platform.

It does appear to be for me anyway a little resource hungry on lean devices such as the router

we were testing on.

Overall, a good tool to have in the bag if needed.

7.2. What I learned.

This course has been a great learning experience and well worth doing, being exposed to

different technologies and platforms has greatly helped broaden my understanding of what is

happening in the greater industry right now.

It will indeed help me to be able to understand the technologies that are coming into

automation and the ones that are already there.

7.2.1 A very brief word on AI.

One of the biggest talking points in the last few years has and is the rise of Artificial

Intelligence, or I guess the more publicly accessible versions of AI, as AI has been around in

limited forms and concepts for a long time.

Doing the project, I ventured into the Bing copilot, yes, I know not very exciting, I wanted to

see if it could take me on a wild AI journey. Think I must have asked the wrong questions as

I just got lost and so did the copilot. I did get one AI to design me a nice logo for kCloud

though, you can see it on the GitHub repo. That is as far as I got into AI for now anyway.

7.3 Future Development Work.
One of the aims of this project from an industrial point to view was to have a system of getting

information from a local machine into a server or cloud space for the customer, without the addition

of expensive third-party hardware or licencing. A Structured Text ST function block has been

developed. This is to transmit a value from standard Codesys 3.5 programmable PLC to the API

server. This has been used to transmit values for the power meters demo screens. This will be further

developed over the coming months.

7.0 Reflection

Page 51 of 63

Figure 58 Function block in use Codesys 3.5

8.0 BIBLIOGRAPHY

Page 52 of 63

BIBLIOGRAPHY

AG, S., 2024. Software AG Packages. [Online]

Available at: https://www.softwareag.com/en_corporate/platform/iot/iot-analytics-

platform.html#packages
Android Developer, 2024. NfcV Developers reference. [Online]

Available at: https://developer.android.com/reference/kotlin/android/nfc/tech/NfcV

[Accessed 19 March 2024].

Bartolo, K., 2020. How to Document an Express API with Swagger UI and JSDoc. [Online]

Available at: https://dev.to/kabartolo/how-to-document-an-express-api-with-swagger-ui-and-jsdoc-

50do

[Accessed 3 Feb 2024].

Bigelow, S. J., 2021. What is edge computing? Everything you need to know. [Online]

Available at: https://www.techtarget.com/searchdatacenter/definition/edge-computing

[Accessed 10 Febuary 2024].

Boucheron, B., 2023. How To Install Node.js on Ubuntu 20.04. [Online]

Available at: https://www.digitalocean.com/community/tutorials/how-to-install-node-js-on-ubuntu-

20-04#option-3-installing-node-using-the-node-version-manager

[Accessed 25 Febuarry 2024].

BROWNLEE, J., 2023. How to Use SharedMemory in Python. [Online]

Available at: https://superfastpython.com/multiprocessing-

sharedmemory/#Example_of_Using_SharedMemory_with_Strings

[Accessed 24 Febuary 2024].

CloudRAIL Gmbh, 2023. Cloud Rail Pricing. [Online]

Available at: https://cloudrail.com/pricing/

CloudRail, 2023. CloudRail Industrial Cloud Connectivity #IIOT. [Online]

Available at: https://cloudrail.com/

Dhaduk, H., 2021. Express vs. Hapi: The Battle For Being Best Node.js Framework. [Online]

Available at: https://www.simform.com/blog/express-vs-hapi/

[Accessed 27 Januarry 2024].

Frappe, 2024. Frappe Homepage. [Online]

Available at: https://frappe.io/

[Accessed 2 March 2024].

IFM Electronic, 2023. AL1350- IO Link Master. [Online]

Available at: https://www.ifm.com/ie/en/product/AL1350

[Accessed 4 January 2024].

IFM Electronic, 2024. Moneo the IIoT platform for industry and production. [Online]

Available at: https://www.ifm.com/ie/en/shared/moneo

IO-Link Community, 2018. IO-Link_System_Description. [Online]

Available at: https://io-link.com/share/Downloads/At-a-glance/IO-

Link_System_Description_eng_2018.pdf

[Accessed 4 January 2024].

ISO, 2019. ISO/IEC 15693-2:2019. [Online]

Available at: https://www.iso.org/standard/73601.html

[Accessed 1 April 2024].

JonathanSanchez.Dev, 2021. How to deploy Node Express API to an AWS EC2 Ubuntu instance.

[Online]

Available at: https://jonathans199.medium.com/how-to-deploy-node-express-api-to-ec2-instance-in-

aws-bc038a401156

[Accessed 20 Feb 2024].

Kunbus gmbh, 2023. Industrial RaspberryPi for control and IIOT Projects. [Online]

Available at: https://revolutionpi.de/revolution-pi-serie

8.0 BIBLIOGRAPHY

Page 53 of 63

Longbottom, C., 2021. Edge Computing Vs Cloud Computing whats the difference. [Online]

Available at: https://www.techtarget.com/iotagenda/tip/Comparing-edge-computing-vs-cloud-

computing

[Accessed 26 January 2024].

MariaDB, 2024. MariaDB Community Server. [Online]

Available at: https://mariadb.com/products/community-server/

[Accessed 8 Febuary 2024].

MOXA, 2019. Does Your IoT Application Need Fog Computing. [Online]

Available at: https://www.moxa.com/en/articles/does-your-iot-application-need-fog-computing

[Accessed 26 January January].

MySQL, 2023. MySQL 8.3 Reference Manual - Functions That Search JSON Values. [Online]

Available at: https://dev.mysql.com/doc/refman/8.3/en/json-search-functions.html#function_json-

extract

[Accessed 28 Januarry 2024].

Oostdijk, J., 2024. Open WRT- Create a sample procd init script. [Online]

Available at: https://openwrt.org/docs/guide-developer/procd-init-script-example

[Accessed 21 02 2024].

OpenWrt, 2023. Managing services. [Online]

Available at: https://openwrt.org/docs/guide-user/base-system/managing_services

[Accessed 21 Febuarry 2024].

Pelakauskas, A., 2022. How to Run Python Script as a Service (Windows & Linux). [Online]

Available at: https://oxylabs.io/blog/python-script-service-guide

[Accessed 5 January 2024].

Pensa, C. J. T., 2021. NFC From Scratch (With a Practical Example). [Online]

Available at: https://medium.com/flux-it-thoughts/nfc-from-scratch-with-a-practical-example-

ce0c7995595b

[Accessed 19 March 2024].

python.org, 2024. sqlite3 — DB-API 2.0 interface for SQLite. [Online]

Available at: https://docs.python.org/3/library/sqlite3.html

[Accessed 8 Febuary 2024].

Reitz, K., 2019. https://docs.python-requests.org/en/latest/index.html. [Online]

Available at: https://docs.python-requests.org/en/latest/index.html

[Accessed 25 March 2024].

Roche, D., 2022. Computer Systems and Networks Assignment IOT. [Online]

Available at: https://github.com/RocheDJ/TankCheck/tree/main

[Accessed 07 Febuary 2024].

Roche, D. J., 2024. HDip Mobile Development Assignment. [Online]

Available at: https://github.com/RocheDJ/DataViewLogger

Simplilearn, 2023. Django Vs. Flask: Understanding The Major Differences. [Online]

Available at: https://www.simplilearn.com/flask-vs-django-article

[Accessed 6 Febuary 2024].

Software AG , 2024. Softwareaeg.com. [Online]

Available at: https://www.softwareag.com/en_corporate/platform/iot/iot-analytics-

platform.html#packages

Software AG, 2024. Software AG Git. [Online]

Available at: https://github.com/SoftwareAG

[Accessed 6 Januarry 2024].

SQLite, 2024. SQLite Homepage. [Online]

Available at: https://www.sqlite.org/index.html

[Accessed 6 February 2024].

Stokes, D., 2017. What you need to know about JSON in MySQL. [Online]

Available at: https://opensource.com/article/17/5/mysql-json

[Accessed 8 Febuary 2024].

8.0 BIBLIOGRAPHY

Page 54 of 63

Taparia, A., 2023. The top 10 industrial automation trends—as seen at SPS 2023. [Online]

Available at: https://iot-analytics.com/top-10-industrial-automation-trends/

[Accessed 6 January 2024].

Teltonika, 2024. Teltonika Wiki Knowlege Base. [Online]

Available at: https://wiki.teltonika-networks.com/view/RUT956

[Accessed 24 January 2024].

Trendlog, 2024. IIoT Devices. [Online]

Available at: https://www.trendlog.dk/iiot-devices/

urbandictionary, 2005. Urban Dictionary. [Online]

Available at: https://www.urbandictionary.com/define.php?term=Scotty%20Principle

[Accessed 2 April 2024].

Appendix A

Page 55 of 63

APPENDIX A – KEDGE PROGRAM FLOW CHART

Appendix B

Page 56 of 63

APPENDIX B- ETHICAL APPROVAL CHECKLIST

Appendix B

Page 57 of 63

Appendix B

Page 58 of 63

Appendix B

Page 59 of 63

Appendix B

Page 60 of 63

Appendix C

Page 61 of 63

APPENDIX C- OPEN API DOCUMENTATION FOR BACKEND

Figure 59 Swagger UI landing page.

Figure 60Example of Swagger UI testing of Command Data Object (CDO) get.

Appendix D

Page 62 of 63

APPENDIX D- DATABASE ER DIAGRAM

Appendix E

Page 63 of 63

APPENDIX E-TECHNOLOGIES USED AND END RESULT.

	Revision Sheet
	External Documentation
	Declaration of Authenticity
	Glossary Of Terms
	Table Of Figures
	1.0 Introduction
	1.1 Background
	1.2 Generalized Customer requirements
	Customer A:
	Customer B:
	Customer C:
	Customer D:

	1.3 Project Aims and Scope

	2.0 Market Research
	2.1 Terminology and Theory
	2.2 Product research

	3.0 System Overview
	3.1 Application in brief
	3.2 Real World Application
	3.3 Detailed Overview

	4.0 Design and Analysis.
	4.1 Data models
	4.1.1 User Data Model
	4.1.2 Process Variable Model or Object (PVO)
	4.1.3 Process Data Model or Object (PDO)
	4.1.3.1 Example Specific data for the PDO JSON

	4.1.4 Control Data Model or Object (CDO)
	4.1.5 Installation Model

	4.2 Hardware.
	4.3 Software.
	4.3.1 New Technologies and platforms.
	4.3.2 Tools and IDE

	4.4 Control Philosophy.
	4.4.1 Example inputs and outputs
	4.4.2 Network Layout

	4.5 Project Management

	5.0 Functional design specification
	5.1 Edge to Fog Development
	5.1.1 Main
	5.1.2 Local Webserver Process.
	5.1.3 API Web Client Process
	5.1.4 API GET Client Process
	5.1.5 Code Layout and Notes

	5.2 Backend Development
	The API implements JWT authentication, I tested this for several routes mainly within user management as well as PVO write.
	5.2.1 Swagger UI

	5.3 Front End Web Application
	5.4 Native Android App

	6.0 Issues and Resolutions
	6.1 Fog Node Issues
	6.1.1 Auto starting on Open WRT
	6.1.2 Don’t mention the firmware!
	6.1.3 Communication between sub processes

	6.2 Back end /Front End Issues
	6.2.1 Node Versions
	6.2.2 More Start stop Issues.
	6.2.3 Frappe Charts Datasets

	7.0 Reflection
	7.1 Project Goals achieved and not.
	7.2. What I learned.
	7.2.1 A very brief word on AI.

	7.3 Future Development Work.

	Bibliography
	Appendix A – kEdge Program Flow chart
	Appendix B- Ethical Approval Checklist
	Appendix C- Open API documentation for backend
	Appendix D- Database ER diagram
	Appendix E-Technologies Used and end result.

